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1 Problem

A flexible hysteroscope sheath should be able to withstand the bending required by a physician within the
uterus without buckling or transferring excessive stress upon the internal channels and instruments. A
general setup is sketch in Figure [1} In order to ensure that this is the case, we aim to find a range for the
Young’s Modulus and the minimum yield stress of a flexible hysteroscope sheath.
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Figure 1: Sketch of bent hysteroscope sheath containing essential elements.

2 Data and Diagrams



Parameters Value Description

To 0.6 mm Outer radius of inner fluid tube. Shown in Figures [3]
T 0.4 mm Inner radius of inner fluid tube. Shown in Figures
T; ro —r; = 0.2 mm Thickness of inner fluid tube. Shown in Figures
R 0.835 mm Radius of hysteroscope sheath (Assumed 5 Fr). Shown in Figures
T 0.1 mm Thickness of hysteroscope sheath. Shown in Figures
l 5 cm Length of curved section of hysteroscope sheath/inner tube [5]. Shown in Figure
Vs 0.25 Assumed Poisson’s Ratio of the sheath
v; 0.49 Assumed Poisson’s Ratio of inner tube (rubber-like)
E; 600 MPa Young’s Modulus of inner tube [1]
Oyield,i 20 MPa Yield stress of inner tube [1]
Oyield, s ? Yield stress of sheath
Ce 0.05 Critical flattening ratio

Table 1: The values for the inner fluid tube were chosen because it tends to have the highest Young’s modulus
and lowest yield stress according to [1]. The other potentially weakest component might be the optic fiber,
but this was determined to have a significantly higher yield stress based on calculations from diameter given
in [4] and elasticity modulus given in [2].

Variables Value Description

E, ? Young’s Modulus of sheath

¢ ? Flattening ratio of sheath cross section
Es ? Hoop strain of sheath

€, ? Axial strain of sheath

O ? Hoop stress of sheath

o, ? Axial stress of sheath

Tmax ? Maximum shear stress between inner tube and sheath
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Figure 2: The tube ovalization is pictured in three ways. On the left, the curvature of the tube is shown
with a radius of p, or a curvature of K = 1. On the left, a dotted line also shows the straightened out
tube to indicate that its full length is . The two cross sections on the right show the ovalization of the tube
under bending. We define the s- and t-axes to be the arc distance and radial position away from the z-axis
respectively, as shown in the center case where ( = 0. The flattening ratio, {, shouldn’t cross a critical
threshold in order to ensure that buckling doesn’t occur. In the case where ¢ > 0, we define w(s) to be the
change in the distance from the axial center to the edge of the tube at a given s along the tube. We define
©(s) to be the change in the angle of the tangent plane from the undeformed circle.

Figure 3: We assume that the inner tube will be pressed against the sheath and there will be a contact force
that will exert a shear stress on both elements.
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Figure 4: We assume a fixed curvature s for the whole sheath and tube. We define P(x) to be the force
profile on the inner tube in order to achieve this curvature, as shown on the left. Note that P(x) is not
necessarily constant. The sketch on the right shows the radius of the inner tube’s curvature, p;.

3 Assumptions

In order to simplify analysis, we will assume that the sheath is thin walled and we can model the contact
between the inner tube and sheath as a line load. In order to simplify the analysis of ovalization, we will
also assume that ( is close to zero. We also assume the force profile on the inner tube is quadratic.

4 Theory
4.1 Buckling Analysis of Sheath

We use the energy minimization method proposed by |7] to model the ovalization of our hysteroscope sheath.
In this approach, we will minimize the strain energy, U, with respect to ¢ in order to determine flattening.

The strain energy is given by,
o2 o T/2
= 2/ / (w1 + wo)dtds, (1)
T/2

where w; and wo are given by,

fE/ (2e, —es)de, + /z(2€s—5z)dss (2)

wo = (62 +€5)% + 2,6, (3)

6(1— 21/5)
Axial stress is given by,

. t .
g, =&, + —sin(0 + ¢), (4)
z
where p, is the radius of the curvature of the sheath. We expect for our hysteroscope to be able to turn
30° [6], so we set p. = 1/(%). As shown in Figure[2| ¢ is the angle of deflection from the original circular
geometry due to ovalization. Here t represents the radial axis, as shown in Figure[2] In [7], £, is defined as,
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Similarly for hoop strain, we have,

1 d
=2 R( df)—l (6)
£, + 192
oo TR )
1+ &
For a circular tube, [7] gives us,
de 3¢ 2s
g = ECOS <R> . (8)

Finally, in order to find ¢ for a given geometry and material properties as laid out above, we must
minimize U by solving,
ou
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We can use our critical flattening ratio, (., to then compute the minimum Young’s modulus for our

sheath, Fj.
Once we have this, we can back calculate the shear and hoop stress with
2F
z— 1= 2 z — Es o571 o &z s
o 95_(5 5)—&—3(1_21/5)(6 +es)
2F
s — qa = 2 s T &z o571 o, N \&z s
o 95(6 6)+3(1_2ys)(6 +es)

where the effective strain, £, is given by,

2
€= -\/e2+e2 —eue,.
3 z+ S

The yield stress of our chosen hysteroscope material should not be below either o, or og.

4.2 Contact between Sheath and Inner Tube

In order to determine how much shear stress will be transferred to the inner tube, we can use a Hertz line
contact, as laid out by [3]. First, we will need to find a force profile, as shown in Figure [4f We will assume

a quadratic force profile.

P(z) = az?

(14)

We know that the total moment acting on the pipe must be M(l) = E;Ix where the second moment of

area, I, is given by

I=2(rg—ri)

SE

and the curvature, k, is
1 1

k=—=————.
Pi 2R —r, + Pz
From here, we can find a to determine our force profile.

1
M(l)z/0 P(z)xdx

1
— Eilmz/ P(z)zdx
0

4E1II€
= T

(15)

(16)

(17)

(18)

(19)

Now that we have a force profile, we can directly use the equations provided by [3] to find the half width

of contact,

b [4PR,
o nE,.

Here, R. and E. are the relative radius and contact modulus respectively, given by,

1 1- 1/3 1-— 1/2»2
E. E, E;
11 1
R. R r,
Finally, we can calculate the maximum pressure,
2P(1
L 2P0)
b

(20)

(21)

(22)

(23)

and the maximum shear stress is given by Tynax = 0.30p. We can then ensure that our chosen F doesn’t

exceed the maximum required to ensure that oyicid,; > Tmax-
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Solution

Both solutions were computed using the SymPy symbolic computation library in Python.

5.1 Buckling Analysis of Sheath

from sympy import *

rho_
theta

phi

eps_

eps_
eps_

z, R, T, nu, t, s, E, zeta = symbols("\\rho_z R T \\nu t s E \\zeta")
s /R
=3 *x zeta / 2 * sin(2 * s / R)

z = R * cos(theta + phi) / rho_z - 1 + t / rho_z * sin(theta + phi)

sO =2 % pi * R* (1 /R + phi.diff(s)) - 1
s = (eps_sO + t * phi.diff(s)) / (1 +t / R)

E / 9 * (eps_z**2 - eps_z * eps_s) + 2 * eps_s * eps_z - eps_z**2 / 2
6 x (1 - 2 % nu) * (eps_z + eps_s) ** 2 + 2 * eps_s * eps_z

U = 2 * integrate(integrate(omega_1 + omega_2, (t, -T / 2, T / 2)), (s, 0, 2 * pi))
1 =20.05
vals = {
rho_z: 6 / pi.evalf() * 1,
R: 1.67e-3 / 2,
T: 1le-4,
nu: 0.49,
}
eq = Eq(U.subs(vals) .diff(zeta) .simplify(), 0)

# Assume zeta is really small and solve
zeta_sol = solve(eq, zeta) [0].subs({zeta: 0}).doit()

# We can now finally solve for a minimum E
E_min_expr = solve(zeta_sol - zeta, E)[0]

# Assume a mazimum zeta of 0.05
E_min = E_min_expr.subs({zeta: 0.05}).evalf()

eps_

eff = 2 / 3 * sqrt(eps_z**2 + eps_s**2 - eps_z * eps_s)

sigma_z = 2 * (2 * eps_z - eps_s) / 9 / eps_eff + E / (3 * (1 - nu**2)) * (

)

eps_z + eps_s

sigma_s = 2 * (2 * eps_s - eps_z) / 9 / eps_eff + E / (3 * (1 - nu**2)) * (

)

eps_z + eps_s

print ("Minimum E:", E_min)

# The mazimum stress will be in the inner and outer parts of the curve furthest
# from the center of the tube
print(



"Max sigma_z:", sigma_z.subs({s: pi, t: R+ T / 2, zeta: 0.05}).subs(vals).evalf()

)
print(

"Max sigma_s:", sigma_s.subs({s: pi, t: R+ T / 2, zeta: 0.05}).subs(vals).evalf()
)

5.2 Contact between Sheath and Inner Tube

from sympy import *

ro =1.2e-3 / 2
ri = 0.8e-3 / 2
Ti = ro - ri

R =1.67e-3 / 2

Rc = (1 /ro-1/R) »* -1
1 = be-2

rho_z = 6 / pi.evalf() * 1

nu_s = 0.25
nu_i = 0.49
Ei = 600e6

Es = symbols("E_s")
Ec = ((1 - nu_i**2) / Ei + (1 - nu_s**2) / Es) **x -1

I =pi/ 2% (roxx4 - ri*x4)
rho_i = 2 * R - ro + rho_z
kappa = 1 / rho_i

P =4 % Ei * I *x kappa / 1*%2

b= ((4 *xP * Rc) / (pi * Ec)) »* (1 / 2)
p=2x*P/ (pi * b)

print ("Maximum Shear Stress:", 0.3 * p)
6 Results

6.1 Buckling Analysis of Sheath

The output from the code was:

Minimum E: 0.0814213097754493
Max sigma_z: 0.498050249871858*E - 0.497280150807378
Max sigma_s: 0.498050249871858*E + 0.633175733104086

Because the minimum F; is so small, on the order of 10~2 Pa, we can conclude that there is no practical
lower bound for F,. We do, however get an expression for the stress in terms of Ey, so we must ensure that
for our chosen material,

Oyield,s > 0.498050249871858 K5 + 0.633175733104086 |. (24)

6.2 Contact between Sheath and Inner Tube

From the code, we get



0.310181027837667 (25)
Tmax =
\/5.58340369219741 x 10~12 4 0-00413299720602848
However,
Hm Tiax & 131,270 Pa < oyield,i, (26)

Es—o00

so we also don’t have to worry about an upper bound for F,.
Thus, we have shown that Es need not be restricted by an upper or lower bound, but the relationship in

Equation [24] must be maintained in order to ensure that a hypothetical flexible sheath doesn’t buckle. We
do not need to worry about excessive stress on the inner tubing, which was found to be the weakest internal
component, because it will not be loaded with shear stress exceeding its yield stress no matter our choice of

E;.
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Problem: Determine the maximum angle ® that a hysteroscope sheath can be at with respect to the
cervical canal without the distal end of the sheath leaving the vicinity of the fundus.
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Figure 1. Diagram of a hysteroscope sheath inserted into the cervical canal.

Data and Diagram:

Variables

Description
Intra-ostial distance (Bromer et al., 2007)
Radius of the uterus (Refaey, n.d.)

Length of the cervical canal (Prendiville &
Sankaranarayanan, 2017)

Width of the cervical canal (Prendiville &
Sankaranarayanan, 2017)

Value

28.8 mm — 0.0288 m
2.5cm — 0.025 m
4cm — 0.04 m

3cm— 0.03m

Distance from the center of the proximal end of the |?

cervical canal to the center of the fundus

Vertical distance from the center of the cervical
canal to the tubal ostia

Angle of the sheath with respect to the cervical

?


https://www.zotero.org/google-docs/?BqvLN0
https://www.zotero.org/google-docs/?R5uDkt
https://www.zotero.org/google-docs/?Er9TBJ
https://www.zotero.org/google-docs/?Er9TBJ
https://www.zotero.org/google-docs/?21rCRC
https://www.zotero.org/google-docs/?21rCRC

Figure 2. Diagram of the uterus and cervical canal illustrating the variables of the analysis.

Assumptions:
1. The uterus can be modeled as a sphere with a 2.5 cm radius.
2. The cervical canal can be modeled as a cylinder with a 3 cm diameter and a 4 cm length.
3. The uterus and cervical canal are symmetrical about the line segment AB.

Theory: tangent of an angle in a right triangle
e Tangent of the angle of the sheath with respect to the cervical canal (I)

‘\'ome = .i.

bt

Solution:
1. Divide the intra-ostial distance d;, by 2 to determine the value of'y (II).

Y = e

1

2. Add the diameter of the uterus 2r, to the length of the cervical canal I, to determine the value of
Loc (110).

l*’oi’ = lb +’lru



3. Take the inverse tangent of both sides of equation I (IV).
0=t
an —_—
bt
4. Plug equations II and III into equation I'V (V).
e - "f ~) di,o
0N (L)
5. Solve equation V.
e =k - ( 0.018% m
AN \1(0.04m +2.(0.015 w)

6 =9.090°

Results and Discussion: Under the assumptions, the maximum angle that the sheath can be at with
respect to the cervical canal without the distal end of the sheath leaving the vicinity of the fundus is
approximately 9 degrees. This angle would decrease as the radius of the uterus increases or the length of
the cervical canal increases. The angle would increase as the intra-ostial distance increases.
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Proolem: When performing a polypectomy, for a given insertion force, what Hp geomeiry of
the tissue removal device minimizes PposSible contact stress on the ulerine m.aom;\ﬁum

* Griven insevtion force F from user
* Design variab\e - tip qeomma
(shope « size parameters)

find 9eomem3 to minimize
contact stress, thevefore
minimizimb pcvliom\-ion risk

* Comparin% 3 modelg for geomehg:
') Spherical /rounded +p
2) Flat cireular punch
%) Conical tip

DATA ¢ DIAGRAM

* given: insertion force F
0 gcomemj variobles : R (sphere), & (fiok punch), & 41 (cone)

* Youngs modutus = E= _E
|1-v2



DATA ¢ DIAGRAM

 given: insertion force F
0 3eomeh\3 vaviobles : R (sphere), & (fiot punch), A& 41 (cone)

* Youngs modutus * E = _E

1-v2
varioble definirion
F (N) inserion force
v PoiSSONS rakio of myometviom
€ (Pa) Youngs modulus of myometdum
R (m) Spherico| tip radius
a (m) $lat civeviar tip radius
o (rad) angie of conical +ip
r (m) biunt apex vadius of conical Hp
$ (m) Indentation dephh
PCr) (Pa) pressure distribution
Po (Pa) peak /cenler pressure
P (Pa) mean pressure
.
* <

7,

ASSUMPTION'S
- Elastic hatf space model : Semi-infinite, homogenous , isotropic, linearly elaskic Soiid
- frictionless normal contact
- Rigid tip
= No adhesion ot first touch
- Cone model has a Finite apex with radius T



THEORY & EOUATIONS

O Spnerica tip
L for a rigid sphere on elosiic haif -space under normal 1oad F :

Hevtz 10ad indentation for sphere (Zhu) :
F: u_a_gg'/z ssll q a’: RS

[}
Feterh(afft < de. &+ an (ar2)"
3 R 3 R Ye

a
F- So 2nr po "5 dr = 2rpea? = Po= 3F
3 Zro*

1
- contack rodius: Q= (3F_R 3
4E

- pn: podl"L for 02rza

- (oo 22 o DfE )”’
2ral an \3FR

= Po =< R™*3 - smoller R= higher peok stress

® Fiat eircuiar +ip
b nxis- symmetric flat-ended circuiar puncw (Johnson) (Ling)

- p=E , wherea- radius
102
® Covical +p (Tonnson) (Ling)

for a Sharp cone:
Fe2E 4ana 8 | a:S+tand - p= F - 2€ tana$* . 2€

w m* T ga4ana
T(5*tana)
—> real cone tipsare blunied, and

peok stress increases rapidlj 13

r decreates — QA ~]rd



S0LUTION

—> Spherical :  pg— R7*/3

— Fiot circwor: p=F_
Ta?

- Smallest R ujmds mMoximum $iress

=> smoallest foce radius, &, Moximizes stress

— Conical: ax rg > P S Maximizing Stress : Conical Hip with Smawest blun+ radivs
na?

* Sphere vs. Hlor circuiar:

I3 = - 2, 2
o= BFIZ) - P:f > PR _F_(qE )ls vs. Po.sph¢v¢=£(£)’3
4e wa? T13FR 2r \3FR

R:,sphevc = % 5(2)

<+ Spherical is 1.5 fimes the mean
pressure of o flot cireular Hp with
vess- minimizing mwodel : the same a
* Eendometrivm = 10 Pa (Manchanda)
* ¥z 049 (Manchanda)

— E” (effeckive modulvt) = __E
I-y?

* Insertion force = 4N (Duncan)
* tforge+ peak pressure : Pmox = 100kPa (Badn-Dwomon)

E* s E = 40000Pa s 621 63‘1 Pa

I-v I- (0.49)*
Po = ﬁ(—qek )213 - R: (E)(3F)” : (4.52639Pa)(3.uN)"2 = 14GHXI0 m
2w \3FR (Qtrp.)”l 11[(""",00 Pa)3/2 1 4p9mm
UIITS
¥ With F=4N, E40 kPa, V: 049, keeping Po (W . (W =]—l- L
Po < 100ePa requires a rounded tip radius Pudlz I3 Nm?

0f o} 1eask R = 1464 mm



RESULTS/ DISCUSSION :

while the geometric analysis snowed that the flar cylindrica) model would
minimize average pressure appiiacl fo the muomextuw, dhe spherical model
will minimize peak stress. As peak Stress is generdb more jikely jo cause
the tissue to Hail, i+ wil make mosh sense lo use the spherical model and
Minimize peak Shress. for the Spherical model, the Smallest +ip radius
maximizeS e stress on the tissue. The minimum Hp radius necessa
10 provide less than 100 kPa of presswre was caleulaled, with an example
applied force of 4N (measured from intraviering inshrvments dun‘na we
placement) a youngs modvivs of 40 ePa (based on clastography reports
on e myometrium ), and @ maximum peak pressure of 100xPa (well
below reported soft Hssue ropture shresses which ave often 0.8 - 2.6 MPa
In pelvic tissves. This vieldeda mMinimum radivs of 1.4 LY MM, which
sets a lower bound Jor the necessany radivs of the instrumvent.
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Engineering Analysis: Determining Dimensions for Fluidic
Low-Pass Filter

December 8, 2025

1 Problem

Based on video footage, we were able to determine that we need a cutoff frequency of about 5 Hz for
our fluidic low-pass filter. We will use a latex membrane for the capacitor between the input and output
channels and a constriction to model a fluidic resistor. We need to determine the length and diameter of the
constriction and the diameter of the membrane to achieve the desired cutoff frequency.

Figure 1: Schematic of fluidic low-pass filter showing relvant dimensions.

2 Data
Here, we assume that:
e a =1 cm for the purposes of fitting the capacitor in our design.

e The latex membrane follows a fourth order elastic model (see Equation .



Variable Description Value
fe Cutoff frequency 5 Hz
a Radius of membrane 1 cm
T Tension in membrane 605 N/m
" Dynamic viscosity of fluid | 0.89 mPa-s
r Radius of constriction 2.2 mm
L Length of constriction ?

Table 1: Known variables for fluidic low-pass filter design. The known values were taken from measurements
from the tubing we are using.

3 Analysis

First, we define the cutoff frequency in terms of the resistance and capacitance:

1

= 1
fe 27RC (1)
Based on our assumptions, we can get the capacitance using:
4
Ta
= 2
ST, (2)

The resistance of the constriction can be modeled using Poiseuille’s law:

_ 8ulL
ot
Combining these equations, we can solve for the length of the constriction:
- ’1"4T0
27 fepat

Finally, plugging in the known values, we obtain:

(5)



Engineering Analysis - Force Required for Myometrial Perforation
Problem: Determine the maximum force F, that a hysteroscope sheath can apply to the fundus of the

uterus without causing myometrial perforation.
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Figure 1. Diagram of a hysteroscope sheath applying a force F. to the fundus of the uterus.

Data and Diagram:

Variables

Description

Young’s modulus of the sheath

Young’s modulus of the uterine wall

Equivalent Young’s modulus
Poisson’s ratio of the sheath

Poisson’s ratio of the uterine wall

Shore A hardness of the uterine wall

Value

200 GPa — 200 x 10° Pa )
?

?

0.33 1

0.47 12

10A B!

Pressure on the uterine wall required for myometrial | 2 N/mm? — 2 x 10° Pa ¥

perforation

Pressure on the uterine wall due to the sheath
required for myometrial perforation

Pressure on the uterine wall due to distension fluid | 100 mmHg — 13.3322 x 10° Pa

Diameter of the sheath tip

Outer diameter of the sheath

Length of contact between the sheath and the

uterine wall

[5]
400 pm — 0.0004 m [©

9.525 mm — 0.009525 m

L =L
?nDS = —51(0.009525m)
= 0.00997 m
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F. Force on the uterine wall due to the sheath required | ?
for myometrial perforation

Figure 2. Diagram of a sheath contacting a uterus illustrating the variables of the analysis.

Assumptions:
1. Surfaces in contact are perfectly smooth !,
Materials are homogeneous !,
No frictional forces within the contact area [,
The diameter of the sheath tip is 400 um .
The uterine wall can be modeled as soft silicone rubber !,
The sheath is made out of stainless steel.
E, is significantly larger than E,.
The sheath has an outer diameter of 9.525 mm and a 30° tip.
One third of the tip contacts the uterine wall.

00 N L AW

10 F. is normal to the tangent plane of the uterine fundus.

Theory:
e Converting Shore A Hardness to Young’s Modulus (in GPa) *
log(E,) = 0.02355 — 0.6403 0

e Hertzian Contact Stress between a Cylinder and a Flat Surface [

1
Ee - 1—\/12 1—v2Z (II)
5 tE
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2FCEe 1/2
P = (‘I'[LD )

max

(II1)

e Total Pressure on the Uterine Wall
P =P + P av)

max ¢, max df

Solution:

1. Isolate for E, in equation I and convert from GPa to Pa.

E2 _ (100.02355—0.6403) % 106 (V)

2. Reduce equation II, given that E (P E,

E =17~ (VD)

3. Substitute equation V into equation VI.

0.02355-0.6403 6
10 x10
E ~< 2 (VII)
e 1-v,

4. Isolate for P, ., in equation IV.

(VIII)

¢, max 7 max - Pdf
5. Isolate for F, in equation III.

’nLD

PC max e
F = — (IX)

6. Substitute equations VII and VIII into equation IX.

2
(P —P )LD,

F man[)ZZSSfU 6403 6 ( )
= X Y X
c 20 (10 )x10 )

1—v22
7. Solve equation X.

X a— . X a) (V. m . m

_(2x10° Pa—13.3322x10°Pa)*(0.00997 m)(0.0004

FC - (1000235(10)—0.6403
2

= 49.002 N

Yx10°
1-047)°

Results and Discussion: Under the assumptions, the sheath would need to apply approximately 49 N to
the fundus of the uterus to result in myometrial perforation. This value is roughly 2 times larger than the
reported force required for myometrial perforation with a metal sound, a significantly thinner tool . If
the outer diameter of the sheath or the diameter of the sheath tip increased, the force required for
perforation would increase.
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Engineering Analysis - Spring Constant for Distal Sheath Conformity

Problem: There are two segments of the hysteroscope sheath, a proximal portion and a distal portion. The
proximal end of the distal portion of the sheath is constrained within the proximal portion of the sheath.
There is a spring within the proximal portion and oriented coaxially with the sheath. The distal end of the
spring is attached to the proximal end of the distal sheath. Determine the spring constant k that is needed
so that the distal portion of the sheath will be displaced by 50 mm in the proximal direction prior to the
sheath achieving the force necessary for myometrial perforation.
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Figure 1. Diagram of a hysteroscope sheath applying a force to the fundus of the uterus. The distal
portion of the sheath is connected to the proximal portion via a spring.

Data and Diagram:

Variables

Description

Value

Force on the uterine wall due to the sheath required | 49.002 N

for myometrial perforation

Force applied on the sheath by the user

Force on the sheath due to the spring

Resting length of the spring

F =~ 1.5F = 73.504N
a P

?

?

Length of the spring during maximum compression | ?

Maximum change in spring length

Spring constant

50 mm — 0.05 m

?
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Figure 2. Diagram of a sheath contacting a uterus illustrating the variables of the analysis.
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Figure 3. Free body diagram of the proximal segment of the sheath when the spring is fully compressed.

Assumptions:
1. F,is completely normal to the tangent plant of the uterine fundus.

2. There is no friction between the distal and proximal segments of the sheath.
3. The maximum change in spring length is 50 mm.
4. The spring is massless and obeys Hooke’s Law.
5. The sheath is in static equilibrium.
Theory:
e Spring Force at Maximum Compression (I)

F_= kAl D

e Perforation Force (II)
F =F —F 1))
p a s

Solution:



1. Isolate for F, in equation II.

F =F —F (1I)
N a p
2. Substitute equation I into equation III.
kAl =F —F Iv)
a p
3. Isolate for k in equation I'V.
FF
Al ™

4. Solve equation V.

k = 73.504 N—49.002 N
- 0.05m

= 490.024 -

Results and Discussion: Under the assumptions, the spring constant would need to be approximately 490
N/m. A larger spring constant indicates a stiffer spring. If a larger change in spring length was desired, the
spring constant should decrease. If a larger applied force is required, the spring constant should increase.
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