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1 Problem

A flexible hysteroscope sheath should be able to withstand the bending required by a physician within the
uterus without buckling or transferring excessive stress upon the internal channels and instruments. A
general setup is sketch in Figure 1. In order to ensure that this is the case, we aim to find a range for the
Young’s Modulus and the minimum yield stress of a flexible hysteroscope sheath.
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Figure 1: Sketch of bent hysteroscope sheath containing essential elements.

2 Data and Diagrams
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Parameters Value Description
ro 0.6 mm Outer radius of inner fluid tube. Shown in Figures 3, 4
ri 0.4 mm Inner radius of inner fluid tube. Shown in Figures 3, 4
Ti ro − ri = 0.2 mm Thickness of inner fluid tube. Shown in Figures 3, 4
R 0.835 mm Radius of hysteroscope sheath (Assumed 5 Fr). Shown in Figures 2, 3, 4
T 0.1 mm Thickness of hysteroscope sheath. Shown in Figures 3, 4
l 5 cm Length of curved section of hysteroscope sheath/inner tube [5]. Shown in Figure 2
νs 0.25 Assumed Poisson’s Ratio of the sheath
νi 0.49 Assumed Poisson’s Ratio of inner tube (rubber-like)
Ei 600 MPa Young’s Modulus of inner tube [1]

σyield,i 20 MPa Yield stress of inner tube [1]
σyield,s ? Yield stress of sheath

ζc 0.05 Critical flattening ratio

Table 1: The values for the inner fluid tube were chosen because it tends to have the highest Young’s modulus
and lowest yield stress according to [1]. The other potentially weakest component might be the optic fiber,
but this was determined to have a significantly higher yield stress based on calculations from diameter given
in [4] and elasticity modulus given in [2].

Variables Value Description
Es ? Young’s Modulus of sheath
ζ ? Flattening ratio of sheath cross section
εs ? Hoop strain of sheath
εz ? Axial strain of sheath
σs ? Hoop stress of sheath
σz ? Axial stress of sheath
τmax ? Maximum shear stress between inner tube and sheath
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Figure 2: The tube ovalization is pictured in three ways. On the left, the curvature of the tube is shown
with a radius of ρz or a curvature of κ = 1

ρz
. On the left, a dotted line also shows the straightened out

tube to indicate that its full length is l. The two cross sections on the right show the ovalization of the tube
under bending. We define the s- and t-axes to be the arc distance and radial position away from the z-axis
respectively, as shown in the center case where ζ = 0. The flattening ratio, ζ, shouldn’t cross a critical
threshold in order to ensure that buckling doesn’t occur. In the case where ζ > 0, we define w(s) to be the
change in the distance from the axial center to the edge of the tube at a given s along the tube. We define
φ(s) to be the change in the angle of the tangent plane from the undeformed circle.
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Figure 3: We assume that the inner tube will be pressed against the sheath and there will be a contact force
that will exert a shear stress on both elements.
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Figure 4: We assume a fixed curvature κ for the whole sheath and tube. We define P (x) to be the force
profile on the inner tube in order to achieve this curvature, as shown on the left. Note that P (x) is not
necessarily constant. The sketch on the right shows the radius of the inner tube’s curvature, ρi.

3 Assumptions

In order to simplify analysis, we will assume that the sheath is thin walled and we can model the contact
between the inner tube and sheath as a line load. In order to simplify the analysis of ovalization, we will
also assume that ζ is close to zero. We also assume the force profile on the inner tube is quadratic.

4 Theory

4.1 Buckling Analysis of Sheath

We use the energy minimization method proposed by [7] to model the ovalization of our hysteroscope sheath.
In this approach, we will minimize the strain energy, U , with respect to ζ in order to determine flattening.
The strain energy is given by,

U = 2

∫ 2π

0

∫ T/2

−T/2

(ω1 + ω2)dtds, (1)

where ω1 and ω2 are given by,

ω1 =
2

9
Es

∫ εz

0

(2εz − εs)dεz +

∫ εz

0

(2εs − εz)dεs (2)

ω2 =
Es

6(1− 2νs)
(εz + εs)

2 + 2εsεz. (3)

Axial stress is given by,

εz = ε̊z +
t

ρz
sin(θ + φ), (4)

where ρz is the radius of the curvature of the sheath. We expect for our hysteroscope to be able to turn
30◦ [6], so we set ρz = l/(π6 ). As shown in Figure 2, φ is the angle of deflection from the original circular
geometry due to ovalization. Here t represents the radial axis, as shown in Figure 2. In [7], ε̊z is defined as,

ε̊z =
x

ρz
− 1 =

R cos(θ + φ)

ρz
− 1. (5)

Similarly for hoop strain, we have,

ε̊s = 2πR

(
1

R
+

dφ

ds

)
− 1 (6)

εs =
ε̊s + tdφds
1 + t

R

. (7)

For a circular tube, [7] gives us,

dφ

ds
=

3ζ

R
cos

(
2s

R

)
. (8)

Finally, in order to find ζ for a given geometry and material properties as laid out above, we must
minimize U by solving,

∂U

∂ζ
= 0. (9)
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We can use our critical flattening ratio, ζc, to then compute the minimum Young’s modulus for our
sheath, Es.

Once we have this, we can back calculate the shear and hoop stress with

σz =
2

9

E

ε̄
(2εz − εs) +

E

3(1− 2νs)
(εz + εs) (10)

σs =
2

9

E

ε̄
(2εs − εz) +

E

3(1− 2νs)
(εz + εs) (11)

(12)

where the effective strain, ε̄, is given by,

ε̄ =
2

3

√
ε2z + ε2s − εzεs. (13)

The yield stress of our chosen hysteroscope material should not be below either σz or σs.

4.2 Contact between Sheath and Inner Tube

In order to determine how much shear stress will be transferred to the inner tube, we can use a Hertz line
contact, as laid out by [3]. First, we will need to find a force profile, as shown in Figure 4. We will assume
a quadratic force profile.

P (x) = ax2 (14)

We know that the total moment acting on the pipe must be M(l) = EiIκ where the second moment of
area, I, is given by

I =
π

2
(r4o − r4i ) (15)

and the curvature, κ, is

κ =
1

ρi
=

1

2R− ro + ρz
. (16)

From here, we can find a to determine our force profile.

M(l) =

∫ l

0

P (x)xdx (17)

⇐⇒ EiIκ =

∫ l

0

P (x)xdx (18)

⇐⇒ a =
4EiIκ

l4
(19)

Now that we have a force profile, we can directly use the equations provided by [3] to find the half width
of contact,

b =

√
4PRc

πEc
. (20)

Here, Rc and Ec are the relative radius and contact modulus respectively, given by,

1

Ec
=

1− ν2s
Es

+
1− ν2i
Ei

(21)

1

Rc
=

1

R
+

1

ro
. (22)

Finally, we can calculate the maximum pressure,

p =
2P (l)

πb
(23)

and the maximum shear stress is given by τmax = 0.30p. We can then ensure that our chosen Es doesn’t
exceed the maximum required to ensure that σyield,i > τmax.
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5 Solution

Both solutions were computed using the SymPy symbolic computation library in Python.

5.1 Buckling Analysis of Sheath

from sympy import *

rho_z, R, T, nu, t, s, E, zeta = symbols("\\rho_z R T \\nu t s E \\zeta")

theta = s / R

phi = 3 * zeta / 2 * sin(2 * s / R)

eps_z = R * cos(theta + phi) / rho_z - 1 + t / rho_z * sin(theta + phi)

eps_s0 = 2 * pi * R * (1 / R + phi.diff(s)) - 1

eps_s = (eps_s0 + t * phi.diff(s)) / (1 + t / R)

omega_1 = 2 * E / 9 * (eps_z**2 - eps_z * eps_s) + 2 * eps_s * eps_z - eps_z**2 / 2

omega_2 = E / 6 * (1 - 2 * nu) * (eps_z + eps_s) ** 2 + 2 * eps_s * eps_z

U = 2 * integrate(integrate(omega_1 + omega_2, (t, -T / 2, T / 2)), (s, 0, 2 * pi))

l = 0.05

vals = {

rho_z: 6 / pi.evalf() * l,

R: 1.67e-3 / 2,

T: 1e-4,

nu: 0.49,

}

eq = Eq(U.subs(vals).diff(zeta).simplify(), 0)

# Assume zeta is really small and solve

zeta_sol = solve(eq, zeta)[0].subs({zeta: 0}).doit()

# We can now finally solve for a minimum E

E_min_expr = solve(zeta_sol - zeta, E)[0]

# Assume a maximum zeta of 0.05

E_min = E_min_expr.subs({zeta: 0.05}).evalf()

eps_eff = 2 / 3 * sqrt(eps_z**2 + eps_s**2 - eps_z * eps_s)

sigma_z = 2 * (2 * eps_z - eps_s) / 9 / eps_eff + E / (3 * (1 - nu**2)) * (

eps_z + eps_s

)

sigma_s = 2 * (2 * eps_s - eps_z) / 9 / eps_eff + E / (3 * (1 - nu**2)) * (

eps_z + eps_s

)

print("Minimum E:", E_min)

# The maximum stress will be in the inner and outer parts of the curve furthest

# from the center of the tube

print(
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"Max sigma_z:", sigma_z.subs({s: pi, t: R + T / 2, zeta: 0.05}).subs(vals).evalf()

)

print(

"Max sigma_s:", sigma_s.subs({s: pi, t: R + T / 2, zeta: 0.05}).subs(vals).evalf()

)

5.2 Contact between Sheath and Inner Tube

from sympy import *

ro = 1.2e-3 / 2

ri = 0.8e-3 / 2

Ti = ro - ri

R = 1.67e-3 / 2

Rc = (1 / ro - 1 / R) ** -1

l = 5e-2

rho_z = 6 / pi.evalf() * l

nu_s = 0.25

nu_i = 0.49

Ei = 600e6

Es = symbols("E_s")

Ec = ((1 - nu_i**2) / Ei + (1 - nu_s**2) / Es) ** -1

I = pi / 2 * (ro**4 - ri**4)

rho_i = 2 * R - ro + rho_z

kappa = 1 / rho_i

P = 4 * Ei * I * kappa / l**2

b = ((4 * P * Rc) / (pi * Ec)) ** (1 / 2)

p = 2 * P / (pi * b)

print("Maximum Shear Stress:", 0.3 * p)

6 Results

6.1 Buckling Analysis of Sheath

The output from the code was:

Minimum E: 0.0814213097754493

Max sigma_z: 0.498050249871858*E - 0.497280150807378

Max sigma_s: 0.498050249871858*E + 0.633175733104086

Because the minimum Es is so small, on the order of 10−2 Pa, we can conclude that there is no practical
lower bound for Es. We do, however get an expression for the stress in terms of Es, so we must ensure that
for our chosen material,

σyield,s > 0.498050249871858Es + 0.633175733104086 . (24)

6.2 Contact between Sheath and Inner Tube

From the code, we get
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τmax =
0.310181027837667√

5.58340369219741× 10−12 + 0.00413299720602848
Es

(25)

However,
lim

Es→∞
τmax ≈ 131, 270 Pa ≪ σyield,i, (26)

so we also don’t have to worry about an upper bound for Es.
Thus, we have shown that Es need not be restricted by an upper or lower bound, but the relationship in

Equation 24 must be maintained in order to ensure that a hypothetical flexible sheath doesn’t buckle. We
do not need to worry about excessive stress on the inner tubing, which was found to be the weakest internal
component, because it will not be loaded with shear stress exceeding its yield stress no matter our choice of
Es.
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Problem: Determine the maximum angle Θ that a hysteroscope sheath can be at with respect to the 
cervical canal without the distal end of the sheath leaving the vicinity of the fundus. 

 
Figure 1. Diagram of a hysteroscope sheath inserted into the cervical canal. 
 
Data and Diagram:  

Variables Description Value 

dio Intra-ostial distance (Bromer et al., 2007) 28.8 mm → 0.0288 m 

ru Radius of the uterus (Refaey, n.d.) 2.5 cm → 0.025 m 

lc Length of the cervical canal (Prendiville & 
Sankaranarayanan, 2017) 

4 cm → 0.04 m 

wc Width of the cervical canal (Prendiville & 
Sankaranarayanan, 2017) 

3 cm → 0.03 m 

ltot Distance from the center of the proximal end of the 
cervical canal to the center of the fundus 

? 

y Vertical distance from the center of the cervical 
canal to the tubal ostia 

? 

Θ Angle of the sheath with respect to the cervical ? 

https://www.zotero.org/google-docs/?BqvLN0
https://www.zotero.org/google-docs/?R5uDkt
https://www.zotero.org/google-docs/?Er9TBJ
https://www.zotero.org/google-docs/?Er9TBJ
https://www.zotero.org/google-docs/?21rCRC
https://www.zotero.org/google-docs/?21rCRC


 
Figure 2. Diagram of the uterus and cervical canal illustrating the variables of the analysis. 
 
Assumptions:  

1.​ The uterus can be modeled as a sphere with a 2.5 cm radius. 
2.​ The cervical canal can be modeled as a cylinder with a 3 cm diameter and a 4 cm length. 
3.​ The uterus and cervical canal are symmetrical about the line segment AB. 

 
Theory: tangent of an angle in a right triangle 

●​ Tangent of the angle of the sheath with respect to the cervical canal (I)​

 
 
Solution:  

1.​ Divide the intra-ostial distance dio by 2 to determine the value of y (II).​

 
2.​ Add the diameter of the uterus 2ru to the length of the cervical canal lc to determine the value of 

ltot (III).​

 



3.​ Take the inverse tangent of both sides of equation I (IV).​

 
4.​ Plug equations II and III into equation IV (V).​

 
5.​ Solve equation V.​

 
 
Results and Discussion: Under the assumptions, the maximum angle that the sheath can be at with 
respect to the cervical canal without the distal end of the sheath leaving the vicinity of the fundus is 
approximately 9 degrees. This angle would decrease as the radius of the uterus increases or the length of 
the cervical canal increases. The angle would increase as the intra-ostial distance increases.  



Works Cited 
Bromer, J. G., Sanguinetti, F., Tal, M., & Patrizio, P. (2007). Assessment of the uterine cavity and the 

intra-ostial distance using hysterosalpingography. Fertility and Sterility, 88, S202. 

https://doi.org/10.1016/j.fertnstert.2007.07.691  

Prendiville, W., & Sankaranarayanan, R. (2017). Anatomy of the uterine cervix and the transformation 

zone. In Colposcopy and Treatment of Cervical Precancer. International Agency for Research on 

Cancer. https://www.ncbi.nlm.nih.gov/books/NBK568392/  

Refaey, M. (n.d.). Uterus | Radiology Reference Article | Radiopaedia.org. Radiopaedia. 

https://doi.org/10.53347/rID-4570  

https://www.zotero.org/google-docs/?FuP65T
https://www.zotero.org/google-docs/?FuP65T
https://www.zotero.org/google-docs/?FuP65T
https://www.zotero.org/google-docs/?FuP65T
https://www.zotero.org/google-docs/?FuP65T
https://www.zotero.org/google-docs/?FuP65T
https://www.zotero.org/google-docs/?FuP65T
https://www.zotero.org/google-docs/?FuP65T


 

Problem : When performing a polypectomy ,
for a given insertion force, what tip geometry of

the tissue removal device minimizes possible contact stress on the uterine myometrium

· Given insertion force F from user

· Design variable -> tip geometry
(shape + size parameters) ·al

= find geometry to minimize

- contact stress
,
therefore

minimizing perforation risk

*Comparing 3 models for geometry :

1) Spherical /rounded tip
2) Flat circular punch
3) Conical tip

DATA & DIAGRAM

·

given : insertion force F

·

geometry variables : R(sphere) ,
a (flat punch) , har(cone)

· Youngs modulus : E = E

1 - r2



DATA & DIAGRAM

·

given : insertion force F

·

geometry variables : R(sphere) ,
a (flat punch) , &Er(cone)

· Youngs modulus : E = E

1 - r2

variable

F(N) insertion force

~ Poissons ratio

E(Pa) youngs modulus

R(m) Spherical tip radius

a (m) flat circular tip radius

& crad) angle of conical tip

r(m) blunt apex radius of conical tip

S(m) Indentation depth

p(r)(pa) pressure distribution

Po (Pa) peak/center pressure

P (Pa) mean pressure

I ↳

I device
a devicedevice

I
ASSUMPTIONS

- Elastic half space model : Semi-infinite , homogenous , isotropic, linearly elastic solid

- frictionless normal contact

- Rigid tip
- No adhesion at first touch

- Cone model has a finite apex with radius r



THEORY EQUATIONS

· Spherical tip
↳ for a rigid sphere on elastic half-space under normal load Fi

Hertz load indentation for sphere (2hu) :

F = LERY 8312 ,
a = RS

F =LERY(312 =Ea = BERST
F = ) Zirpol - dr =

Zippo
3

- contact radius : a = (3FR)
- p(r) = Do - for O a

- Do = 3F =CracFE
- Po <R-23 : smaller R = higher peak stress

2 Flat circular tip

↳ Axis-symmetric flat-ended circular punch (Johnson) (Ling)
- p = F

, where a = radius
#92

3 Conical tip (Johnson) (Ling)
for a sharp come :

F = &E tandS2
,

a = Stand & P=E=
EtanSCE

T #2+ and

# (82+anx)

-> real cone tips are blunted,
and

peak stress increases rapidly as

~ decreases -> a - rS



SOLUTION

~ Spherical : PocR-213 - smallest R yields maximum stress

> Flat circular : 5 = F -> smallest face radius
, a, maximizes stress

πa2

· Conical : a < rs
, -Maximizing Stress : Conical tip with smallest blunt radiso

·Sphere vs.
flat circular :

a = (FR)" e P= - PCR = E23 vs . Posphere=FE

Po , sphere=(R)

· Spherical is 1 .5 times the mean

pressure of a flat circular tip with

Stress-minimizing model : the same a

· Eendometrium = 40 kPa (Manchanda)
· v = 0

.
49 (Manchandal

E-> E * (effective modulus) =

1 - wa

· Insertion force = 4N /Duncan)
· target peak pressure : Pmax = 100kPa (Baah-Dwomon)

EX = E = 40000Pa = 52, 639 Pa

1 - V2 1 - (0. 49)2

Po=SFE213eR = HE*(3F = (4 : 52639Pa)(3 .4N) = 146AX

(2πpc)3/2 24 (1000004a) 3/2
= 1 .464mm

↓
UNITS :

* With F= 4 N . E = 40 KPa ,
v = 0.49 , keeping Pa.Da312Po < 100kPa requires a rounded tip radius

Of at least R = 1.
464mm



RESULTS/ DISCUSSION :

While the geometric analysis showed that the flat cylindrical model would

minimize average pressure applied to the myometrium, the spherical model

will minimize peak stress. As peak stress is generally more likely to cause

the tissue to fail
,

it will make most sense to use the spherical model and

minimize peak stress . For the spherical model, the smallest tip radius

maximizes the stress on the tissue. The minimum tip radius necessary
to provide less than 100 kPa of pressure was calculated

,
with an example

applied force of 4N/measured from intrauterine instruments during IUD

placement) , a youngs modulus of 40 kPa (based on elastography reports

on the myometrium.
)
,

and a maximum peak pressure of 100kPa (well

below reported soft tissue rupture stresses which are often 0. 8-2 . 6 MPa

in pelvic tissues
.

This yielded a minimum radius of 1 .464mm
, which

sets a lower bound for the necessary radius of the instrument.
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Engineering Analysis: Determining Dimensions for Fluidic

Low-Pass Filter

December 8, 2025

1 Problem

Based on video footage, we were able to determine that we need a cutoff frequency of about 5 Hz for
our fluidic low-pass filter. We will use a latex membrane for the capacitor between the input and output
channels and a constriction to model a fluidic resistor. We need to determine the length and diameter of the
constriction and the diameter of the membrane to achieve the desired cutoff frequency.

L r

R

C
a

Figure 1: Schematic of fluidic low-pass filter showing relvant dimensions.

2 Data

Here, we assume that:

• a = 1 cm for the purposes of fitting the capacitor in our design.

• The latex membrane follows a fourth order elastic model (see Equation 2).
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Variable Description Value
fc Cutoff frequency 5 Hz
a Radius of membrane 1 cm
T0 Tension in membrane 605 N/m
µ Dynamic viscosity of fluid 0.89 mPa·s
r Radius of constriction 2.2 mm
L Length of constriction ?

Table 1: Known variables for fluidic low-pass filter design. The known values were taken from measurements
from the tubing we are using.

3 Analysis

First, we define the cutoff frequency in terms of the resistance and capacitance:

fc =
1

2πRC
(1)

Based on our assumptions, we can get the capacitance using:

C =
πa4

8T0
(2)

The resistance of the constriction can be modeled using Poiseuille’s law:

R =
8µL

πr4
(3)

Combining these equations, we can solve for the length of the constriction:

L =
r4T0

2πfcµa4
(4)

Finally, plugging in the known values, we obtain:

L = 5.1 cm (5)
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Engineering Analysis - Force Required for Myometrial Perforation 
Problem: Determine the maximum force Fc that a hysteroscope sheath can apply to the fundus of the 
uterus without causing myometrial perforation. 
 

 
Figure 1. Diagram of a hysteroscope sheath applying a force Fc to the fundus of the uterus. 
 
Data and Diagram: 

Variables Description Value 

E1 Young’s modulus of the sheath 200 GPa → 200 x 109 Pa [1] 

E2 Young’s modulus of the uterine wall ? 

Ee Equivalent Young’s modulus ? 

ν1 Poisson’s ratio of the sheath 0.33 [1] 

ν2 Poisson’s ratio of the uterine wall 0.47 [2] 

S Shore A hardness of the uterine wall 10A [3] 

Pmax Pressure on the uterine wall required for myometrial 
perforation 

2 N/mm2 → 2 x 106 Pa [4] 

Pc, max Pressure on the uterine wall due to the sheath 
required for myometrial perforation 

? 

Pdf Pressure on the uterine wall due to distension fluid 100 mmHg → 13.3322 x 103 Pa 
[5] 

De Diameter of the sheath tip 400 µm → 0.0004 m [6] 

Ds Outer diameter of the sheath 9.525 mm → 0.009525 m 

L Length of contact between the sheath and the 
uterine wall 

 1
3 π𝐷

𝑠
= 1

3 π(0. 009525 𝑚)
 = 0. 00997 𝑚
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Fc Force on the uterine wall due to the sheath required 
for myometrial perforation 

? 

 

 
Figure 2. Diagram of a sheath contacting a uterus illustrating the variables of the analysis. 
 
Assumptions: 

1.​ Surfaces in contact are perfectly smooth [1]. 
2.​ Materials are homogeneous [1]. 
3.​ No frictional forces within the contact area [1]. 
4.​ The diameter of the sheath tip is 400 µm [6]. 
5.​ The uterine wall can be modeled as soft silicone rubber [7]. 
6.​ The sheath is made out of stainless steel. 
7.​ E1 is significantly larger than E2. 
8.​ The sheath has an outer diameter of 9.525 mm and a 30° tip. 
9.​ One third of the tip contacts the uterine wall. 
10.​ Fc is normal to the tangent plane of the uterine fundus. 

 
Theory: 

●​ Converting Shore A Hardness to Young’s Modulus (in GPa) [8]​
​ (I)​𝑙𝑜𝑔(𝐸

2
) = 0. 0235𝑆 − 0. 6403

 
●​ Hertzian Contact Stress between a Cylinder and a Flat Surface [1]​

​ (II)​𝐸
𝑒

= 1
1−ν

1
2

𝐸
1

+
1−ν

2
2

𝐸
2
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​ (III)​𝑃
𝑚𝑎𝑥

= (
2𝐹

𝑐
𝐸

𝑒

π𝐿𝐷
𝑒

)1/2

 
●​ Total Pressure on the Uterine Wall​

​ (IV) 𝑃
𝑚𝑎𝑥

= 𝑃
𝑐, 𝑚𝑎𝑥

+ 𝑃
𝑑𝑓

 
Solution: 

1.​ Isolate for E2 in equation I and convert from GPa to Pa.​

​ (V) 𝐸
2

= (100.0235𝑆−0.6403) × 106

2.​ Reduce equation II, given that .​𝐸
1

≫ 𝐸
2

​ (VI) 𝐸
𝑒

= 1
1−ν

1
2

𝐸
1

+
1−ν

2
2

𝐸
2

≈
𝐸

2

1−ν
2

2

3.​ Substitute equation V into equation VI.​

​ (VII) 𝐸
𝑒

≈ (100.0235𝑆−0.6403)×106

1−ν
2

2

4.​ Isolate for Pc, max in equation IV.​
​ (VIII) 𝑃

𝑐, 𝑚𝑎𝑥
= 𝑃

𝑚𝑎𝑥
− 𝑃

𝑑𝑓

5.​ Isolate for Fc in equation III.​

​ (IX) 𝐹
𝑐

=
𝑃

𝑐, 𝑚𝑎𝑥
2π𝐿𝐷

𝑒

2𝐸
𝑒

6.​ Substitute equations VII and VIII into equation IX.​

​ (X) 𝐹
𝑐

=
(𝑃

𝑚𝑎𝑥
−𝑃

𝑑𝑓
)2π𝐿𝐷

𝑒

2( (100.0235𝑆−0.6403)×106

1−ν
2

2 )

7.​ Solve equation X.​

 𝐹
𝑐

= (2×106 𝑃𝑎−13.3322×103𝑃𝑎)2π(0.00997 𝑚)(0.0004 𝑚)

2( (100.0235(10)−0.6403)×106

1−(0.47)2 )
= 49. 002 𝑁

 
Results and Discussion: Under the assumptions, the sheath would need to apply approximately 49 N to 
the fundus of the uterus to result in myometrial perforation. This value is roughly 2 times larger than the 
reported force required for myometrial perforation with a metal sound, a significantly thinner tool [4]. If 
the outer diameter of the sheath or the diameter of the sheath tip increased, the force required for 
perforation would increase. 
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Engineering Analysis - Spring Constant for Distal Sheath Conformity 
Problem: There are two segments of the hysteroscope sheath, a proximal portion and a distal portion. The 
proximal end of the distal portion of the sheath is constrained within the proximal portion of the sheath. 
There is a spring within the proximal portion and oriented coaxially with the sheath. The distal end of the 
spring is attached to the proximal end of the distal sheath. Determine the spring constant k that is needed 
so that the distal portion of the sheath will be displaced by 50 mm in the proximal direction prior to the 
sheath achieving the force necessary for myometrial perforation. 
 

 
Figure 1. Diagram of a hysteroscope sheath applying a force to the fundus of the uterus. The distal 
portion of the sheath is connected to the proximal portion via a spring. 
 
Data and Diagram:  

Variables Description Value 

Fp Force on the uterine wall due to the sheath required 
for myometrial perforation 

49.002 N [1] 

Fa Force applied on the sheath by the user  𝐹
𝑎

≈ 1. 5𝐹
𝑝

= 73. 504 𝑁

Fs Force on the sheath due to the spring ? 

l0 Resting length of the spring ? 

lmin Length of the spring during maximum compression ? 

∆l Maximum change in spring length 50 mm → 0.05 m 

k Spring constant ? 

 

https://www.zotero.org/google-docs/?9OHOX1


 
Figure 2. Diagram of a sheath contacting a uterus illustrating the variables of the analysis. 
 

 
Figure 3. Free body diagram of the proximal segment of the sheath when the spring is fully compressed. 
 
Assumptions: 

1.​ Fp is completely normal to the tangent plant of the uterine fundus. 
2.​ There is no friction between the distal and proximal segments of the sheath. 
3.​ The maximum change in spring length is 50 mm. 
4.​ The spring is massless and obeys Hooke’s Law. 
5.​ The sheath is in static equilibrium. 

 
Theory: 

●​ Spring Force at Maximum Compression (I)​
​ (I)​𝐹

𝑠
= 𝑘∆𝑙

 
●​ Perforation Force (II)​

​ (II)​𝐹
𝑝

= 𝐹
𝑎

− 𝐹
𝑠

 
 
Solution: 



1.​ Isolate for Fs in equation II.​
​ (III) 𝐹

𝑠
= 𝐹

𝑎
− 𝐹

𝑝

2.​ Substitute equation I into equation III.​
​ (IV) 𝑘∆𝑙 = 𝐹

𝑎
− 𝐹

𝑝

3.​ Isolate for k in equation IV.​

​ (V) 𝑘 =
𝐹

𝑎
−𝐹

𝑝

∆𝑙

4.​ Solve equation V.​
 𝑘 = 73.504 𝑁−49.002 𝑁

0.05 𝑚 = 490. 024 𝑁
𝑚

 
Results and Discussion: Under the assumptions, the spring constant would need to be approximately 490 
N/m. A larger spring constant indicates a stiffer spring. If a larger change in spring length was desired, the 
spring constant should decrease. If a larger applied force is required, the spring constant should increase.
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